Supplementary Text 2: Bayesian parameter re-
finement

With the assumptions that parameter priors and data error are normally dis-
tributed [1, 2, 3], the task of identifying the posterior parameter values using the
Bayesian methodology of mazimum a posteriori (MAP) is equivalent to solving
a weighted minimization problem. The covariance matrix for the prior distribu-
tion CY is taken to have a diagonal structure reflecting parameter uncertainties
given in [3]: for parameters k; which have an informative prior (that is, those
given in [3] as well as 7-P°P), (Cy); is the variance of the prior distribution; for
parameters which have an uninformative prior (namely, k?uptOB, klﬁﬁinear» Fax

and EC50), (Cy);; = co. That is, the following prior distribution is assumed:

p(k) o< exp (;(k — Kprior) T C (K — kprior)) . (1)

Let dpq, denote the vector of calibration data for each of 3 the dose groups, such
that DG; € {80mg, 180mg, 420mg}. We divide the set of parameters into those
that are common across dose groups, kcomm, and those that vary between the 3
dose groups kpg,, where DG; € {80mg, 180mg, 420mg}. In particular, the latter
set consists of the following 3 parameters: kpg, = {/{:ABCAl,ri‘fILDL,rﬁpOB},
while kcomm consists of the remaining parameters listed in Table ??. For each
parameter set corresponding to a dose group, [kcomm; kpa;]; let G([kcomm; kpa;])
denote the nonlinear mapping from the model parameters to the observation,
representing the model simulation of the data. Furthermore, for each dose group
DG;, let Cyy,q, denote the diagonal matrix with the entries representing SEM
of the corresponding data points. Hence, for each dose group, the conditional

distribution [2] of the data given the model parameters is:

f(dDGi | [kcomm; kDGi]) X
exp (_;(G([kcomm; kpa.]) —da,)” Capy, (G([keomm: ka,]) — dDGi)) :

dpg,

For each dose group, the posterior distribution ¢([kcomm; ¥pa;]|dpe,) is given by
the product of terms f(dpg,|[kcomm; kpa,]) and p(k). Hence, to find the MAP
solution which minimizes the posterior, the following nonlinear least squares
problem is solved: with the objective function for each dose group defined as,

Xba, (kcomms kpa,]) =
(G([kcomm; kDGi]) - dDGi)TC(;ch;i (G([kcomm; kDGi]) — dDGi)
+([kcomm; kDGi] - kPYiOF)TCk_I ([kcomm; kDGi] - kprior)v

the MAP solution, kyap, is the minimizer for the sum over the 3 dose groups:

80mg,180mg,420mg

. 2 .
kyap < min g XDa, ([Fcomm; kpa,])-
[kcomm kDG gomg iFDG180mg DG 420me ] Do =



The above nonlinear minimization problem was solved using genetic algorithm
ga from the Mat1ab® Global Optimization Toolbox of MathWorks'. The hybrid
option was selected with the following settings: 100 generations of the genetic
algorithm was run with a PopulationSize=300, followed by constrained mini-
mization with the setting MaxFunEvals=20000, MaxIter=500. In all numerical
integration of ODEs, the relative and absolute tolerances were set to 10719 and
107!2 respectively. The obtained solution kyap is listed in Table 2.
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